top of page
  • Facebook
  • Twitter
  • LinkedIn

Biomateriales 2

20 años de experiencia, nuevos proyectos

Imagen1_edited.jpg

News & Events

stay tuned!!

JAE intro 2024

 

4.1 El plazo de presentación de las solicitudes será de un mes, a contar desde el día siguiente al de la fecha de publicación del extracto de la convocatoria en el Boletín Oficial del Estado (BOE). (Viernes 19 de abril de 2024)

 

Nuestra oferta:

Bioimpresión en 3D para medicina regenerativa.

 

El trabajo constará de dos partes, en la primera se aprenderán las características adecuadas para que una tinta sea a la vez, imprimible y apta para el cultivo celular en 3 dimensiones, se aprenderán que polímeros son útiles y como reforzarlos, y se estudiará la adición de sustancias que favorezcan simultáneamente la respuesta biológica y alcanzar unas propiedades mecánicas adecuadas. En la segunda parte se utilizará software de diseño 3d y de segmentación por capas para el desarrollo de modelos 3d imprimibles, se incorporará el material biológico a las tintas y se bioimprimirán modelos 3d. Se aprenderá a evaluar la viabilidad y proliferación celular en 3D.

Primera etapa, desarrollo de Biotintas

1.            Preparación de tintas, preparación de hidrogeles basados en polisacáridos naturales bioactivos

2.            Pruebas de imprimibilidad mediante reologia

3.            Cultivos celulares de fibroblastos y/o preosteoblastos

4.            Pruebas de citocompatibilidad de las tintas

Segunda etapa, bioimpresión de constructos 3D

5.            Diseño de estructuras a imprimir, manejo de software 3D, generación de modelos imprimibles

6.            Estudios de fidelidad geométrica de los modelos impresos

7.            Preparación de biotintas, incorporación del componente biológico (células) al material

8.            Bioimpresión 3D de los modelos diseñados con las biotintas desarrolladas

9.            Viabilidad y proliferación celular en los modelos impresos

​


Para quien:

I    Requisitos Académicos: 
Podrán ser solicitantes todas aquellas personas que cumplan alguna de las siguientes condiciones en el plazo de presentación de solicitudes: 
   a) Estén matriculadas en un grado, título universitario oficial ….
   

   d) Estén matriculadas en un Máster Universitario oficial durante el curso académico 2023-2024 o 2024-2025 

(Acreditar una nota media de grado o licenciatura, en una escala decimal de 0- 10 y con 2 decimales, igual o superior a 7.50 )


Comienzo
14.1 Las becas tendrán una duración de siete meses consecutivos, iniciándose el primer día del mes una vez resueltas las becas, salvo en la concurrencia de situaciones extraordinarias sobrevenidas.
La beca tendrá la consideración de ayuda económica para formación. La cuantía total de cada beca asciende a 4.200 euros (20h/sem) y será abonada mensualmente

Todas las condiciones en:
 

https://sede.csic.gob.es/intro2024

https://www.convocatorias.csic.es/convoca/

​

 

 

La unidad de investigación ARIES de la Universidad Nebrija obtiene el estatus de “Unidad Asociada de I+D+i al CSIC”

Publicado: 18 abril, 2024

La unidad ARIES (Grupo de Investigación Aplicada en Ingeniería y Ciencias de la Computación) de la Universidad Nebrija ha obtenido el estatus de “Unidad Asociada de I+D+i al CSIC” por parte del Instituto de Ciencia y Tecnología de Polímeros (ICTP) del CSIC. La resolución firmada estará vigente por un período de tres años a partir del 8 de abril de 2024. Esta unidad será renovable por plazos de igual duración si la colaboración se considera exitosa.

La doctora Nieves Cubo, directora del Centro de Investigación ARIES y pionera en el campo de la impresión tisular 3D, ejercerá como Investigadora Principal de la Unidad Asociada. La colaboración será con el grupo “Biomateriales II”, dirigido por el científico titular Luis M. Rodríguez Lorenzo, centrado en los biomateriales y la ingeniería de tejidos. Ambos grupos comparten su interés por la fabricación aditiva de tejidos (bioimpresión) y la generación de modelos de cáncer.

​

https://www.nebrija.com/medios/actualidadnebrija/2024/04/18/la-unidad-de-investigacion-aries-de-la-universidad-nebrija-obtiene-el-estatus-de-unidad-asociada-de-idi-al-csic/

 

 

Check out our MICINN-AEI funded project:

(PID2021-128985OB-I00) 

 

New noninvasive technolgy for inhibition of solid tumor growth based on low intensity ultrasounds

 

​

Summary

This project proposes an investigation for the modulation of pancreatic tumors through a strategic performance of low intensity ultrasound as a new technological approach for cancer research. A study will be carried out of the mechanical properties and stresses developed inside tumors, as well as of the biodynamic interactions in the tumor microenvironment, and the response in genes and other biomarkers, intrinsically related to the evolution of the tumor, will be analyzed. The project involves researchers from different disciplines: biologists, chemists, oncologists, medical experts in pathological anatomy, physicists and engineers. Tumors of the digestive tract are one of the most common types of cancer. Pancreatic adenocarcinoma (PDAC) is the 4th leading cause of cancer death, with a mortality rate almost equal to the incidence rate. This disease is highly resistant to treatment due in many cases to the desmoplastic stroma that acts as a barrier to the entry of drugs and immune cells, thus limiting the use of chemotherapy. Mechanopathology has recently been identified as a marker of cancer biology. Tumors exert solid stresses arising from the solid components of the tumor microenvironment, including cells and the extracellular matrix. These stresses promote tumor growth and compress the lymphatic vessels, inducing hypoxia. Thus the effectiveness of the therapies is inhibited. Recent studies of the literature present models of the tumor microenvironment to study how physics affects tumors and revealed that cell movements are governed by mechanical forces of interaction between cells and between cells and the extracellular matrix. The adhesion capacity of cancer cells to the stroma that surrounds them induces intracellular contraction forces that deform their microenvironment through the alignment of collagen fibers, altering its mechanical properties. Thus, we intend in this Project to study the effects of intercellular and cell-ECM interactions through a new technological strategy based on the use of low intensity ultrasound combining bioprinted models, 2D and 3D cell samples, as well as ex-vivo and in vivo samples of mouse. The key advantage of 3D printing cancer cells is the potential to model the tumor microenvironment in-vitro with very high fidelity, offering a greater representation of tumor formation and progress to analyze its response to drugs and avoiding the use of animal samples. . The project also aims to study the elastic properties in macro samples of anisotropic tissues to determine internal stresses and to build a special map of their elastic properties. The study of Young's modulus as a tensor in highly anisotropic tumors is of special interest to understand the progression of their malignancy.

 

Sustaining human life in space

Check out our contribution to CSIC road map for the future:
 

Sustaining human life in space

​

Libro Blanco CSIC 12: Our future? Space colonization and exploration 110-143 (2020)

​

Authors: Benavides-Piccione, Ruth ; Medina, F. Javier  Roldán, Eduardo R. S.  Von Kobbe, CayetanoRodríguez-Lorenzo, Luis M. Revilla Temiño, Pedro ; Martínez Fernández, Beatriz  Sentandreu, Miguel Angel ; González-Pastor, José Eduardo ; González Grau, Juan Miguel  Herranz, Raúl  

​

On 20th July 1969, the Fresnedillas Control Station, near Madrid, received the first words of a human from the surface of the Moon. “That’s one small step for [a] man, one giant leap for mankind”, was the historical sentence recorded from Neil A. Armstrong, commander of the “Apollo XI” mission. Nowadays, fifty years after Armstrong’s epic achievement, space exploration by humans is commonly recognized as a highly exciting and attractive challenge and a powerful booster for scientific and technological progress in order to improve the human life on Earth (NASA et al. 2018). This is true despite some criticisms (minority, but significant) that question the high costs that it entails (Rinaldi 2016). The establishment of permanent settlements in the Moon and Mars is becoming a realistic venture day by day. After a decade of successful rover explorations to the surface of Mars (Voosen 2018), both ESA and NASA, and more recently the agencies from growing economies in Asian countries, are working to promote a manned mission, first to the Moon, and then to Mars. The European Space Agency (ESA), of which Spain is an active member, adheres to these objectives and is strongly committed in supporting and participating in these programs. The main aim of space life science is to understand how the space environment, and specifically altered gravity and radiation, affects the morphology, physiology and behaviour of living organisms, and to design countermeasures to enable terrestrial life, and particularly human life, to develop outside Earth. That is, how they perceive and respond to gravity and radiation and adapt to the space environment. There is a variety of disciplines, such as genetics, molecular, anatomical or physiological fields, which use a range of technologies to address these issues. In order to understand adaptations at the functional level it is necessary to comprehend adaptations at cellular and tissue levels. Also, basic research analysing biomolecules, cells and model organisms are necessary to progress towards exploration subsystems or bioregenerative life support Systems. Figure 1 shows a scheme of the synergism between space biology and human research from NASA life sciences translational research (taken from Alwood et al., 2017). Thus, life science space research moves from biological systems to human health in order to support successful human exploration; through the horizontal integration of research between basic and applied researchers, along with vertically-integrated teams.

Gradient

Latest Publications

Tailoring/Tuning properties of polyester urea-urethanes through hybridization with titania obtained by sol-gel process

​

by: D.M. González-García, Luis M. Rodríguez-Lorenzo et al

Polymers 15 (10), 2299,  2023, 

All our publications can be found on CSIC repository: https://digital.csic.es

​

Hybrid materials have been studied due to the possibility of combining properties of organic components such as elasticity and biodegradability with the inorganic components such as good biological response into one improved material. In this work Class I hybrid materials based on polyester-urea-urethanes and Titania were obtained by modified sol-gel method. This was cor-roborated by FT-IR and Raman techniques by the formation of hydrogen bonds and the presence of Ti-OH groups in the hybrid materials. In addition, the mechanical and thermal properties and degradability were measured using techniques such as Vickers hardness, TGA, DSC, and hydrolytic degradation; these properties could be tailored by hybridization between both organic and inorganic components. The results shows that the Vickers hardness increase 20% from polymers to hybrid materials and the surface hydrophilicity increases improving their cell viability. Furthermore, Cytotoxicity in vitro test was carried out using osteoblast cells for intended biomedical applications and they showed non-cytotoxic behaviour.

 

 

grafical abstract.jpg
bottom of page